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Abstract

Image retrieval can be dealt by combining standard desespsuch as those of MPEG-7, which are de ned independémtly
each visual cue (e.g. SCD or CLD for Color, HTD for texture &tlEfor edges). A common problem is to combine similarities
coming from descriptors representing drent concepts in dierent spaces. In this paper we propose a color texture géeaori
that bypasses this problem from its inherent de nition. sitiased on a low dimensional space with 6 perceptual axeguréex
is described in a 3D space derived from a direct implementaif the original Julesz's Texton theory and color is ddseatiin a
3D perceptual space. This early fusion through the blob ephin these two bounded spaces avoids the problem and allews
to derive a sparse color-texture descriptor that achieimeitas performance compared to MPEG-7 in image retrievabrébver,
our descriptor presents comprehensive qualities sin@nittso be applied either in segmentation or browsing: (&rs&image
representation is de ned from the descriptor showing aagrable performance in locating texture patterns inclugecbimplex
images; (b) a vocabulary of basic terms is derived to builtheermediate level descriptor in natural language imprg\rowsing
by bridging semantic gap.
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1. Introduction that the retrieval can be performed [3, 4, 5, 6, 7]. These meth

L _ ) ods have signi cantly improved retrieval results, but thee
Due to the growth in size of image collections and the need; 4i erent from the results obtained by humans
to retrieve semantically-relevant images from them, theste

opment of e ective systems for image retrieval has acquire o .
great importance since the early 90s. Since then, the studi earch perfor_mgd by a human S.Ubj.eCt Is theedénce between
on the development of content-based image retrieval syste uman description of th.e querlgd 'mage apd the level of de-
have widely increased. The goal of these content-based inpCription .(the extrac?ed information) of retrieval systehju- .
age retrieval (CBIR) systems is to represent and to index imMan subjects use high Ievgl concepts (gnd words) to |dent|fy
age databases using the visual content of the images such glgments of the image, actions or situations, whereavelri
color, shape, texture and spatial layout, so low-level ie@g- methods e>_<tract low level features (i.e. _co_lor, texture_am]
ture extraction is the basis of CBIR systems. Usually muIti—etC)' Tr]e di erence beftween these description Ievels\|s know_n
dimensional feature vectors are used to describe thesertsnt %S t|he semantic gap [2]. One_way to reduce the ‘semantic
The descriptors can either be extracted from the entire e'amaggap ' p.omted out by L'u. etal. [8] in their survey on CBIR sys-
or from regions. In the rst case, the image is often chanacte tems, is t_he use of object (_)ntolpgy tp_ de ne high-level con-
ized by its histogram thus obtaining a global image desoript cepts. This requires to_ob_tam Op]dm't'es of Images. Some_
In the second case, image regions are obtained partitidhéng works have studied this issue in narrow application dqmams
image into tiles from which features are extracted; thiswag [9, 10, _11’ 12]‘_ Another way WOUI.d b.e to_dg ne descrlp.tors
of representing the global features of the image at a ner resPresenting the image components in linguistic terms, wisch
olution [1, 2]. The most important drawback to extract imageOne of the goals of this paper.
visual content of both methods has been the inability tourapt ~ Recently, the bag-of-words model uses image features-as i
semantic content. sual words' [13] of a wide vocabulary, mapped onto image cat-
A better method to obtain regions is to use segmentation algories by machine learning techniques [14]. The learniog p
gorithms to divide images into homogeneous regions acegrdi cess deals with the whole width of the semantic gap. These
to some criteria that discriminate between etient entities of ~approaches achieves important results in general cazegion
the image. This is the rst step of all region-based image re-0f scenes or objects even when the vocabulary is based on low-
trieval systems (RBIR). Then some descriptors are de ned stgvel features. One question that arise from our work is how
these techniques could improve the results by introduciogem
o 134977 559610 semantic information in their vocabularies.
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d The main problem of current retrieval systems simulatirgg th

Preprint submitted to Computer Vision and Image Undersitzgnd June 16, 2011



scriptors are low-level features combined with shape or spa Here in this work we go back to the descriptor de nition
tial location features. Descriptors are sometimes obthfirean  step by proposing a compact descriptor callexture Com-
histograms [3, 15, 9, 16]. Other color descriptors capthee t ponent Descriptgrwhich deals with the annotation of color-
spatial color distributions: color layout (CLD) and coldns-  textures without any learning step. Our descriptor reliesao
ture (CSD) descriptors. These last descriptors and déscsip pure bottom-up approach where feature selection is ingine
obtained from histograms are included in the MPEG-7 [17]perceptual assumptions. We justify this backtracking &de-
as standard color descriptors. In regard to texture ddascsip scriptor de nition because we can achieve two desired prop-
there are dierent sets of features, for example, wavelet featuresrties: the descriptor is low dimensional and comprehensiv
using Gabor lters [15, 18, 17, 7] or rotated complex waveletThis is, it is based on six dimensions with a direct percdptua
Iters [19], both de ne the multiscale descriptor as a veacto correlation each. These properties can be achieved since we
containing energy and energy deviations before the coorebp  substitute machine learning ectiveness by strong perceptual
ing lter is applied to the image. Liu and Picard [4] develabe assumptions. These are directly derived from the textoarthe
the 'Wold' features which distinguish between 'structuradd  [35] which is complemented with perceptual grouping mecha-
‘random’ texture components. The former correspond to thenisms capturing patterns emerging from the repetition oéllo
peak magnitudes of image autocovariance and the lattehare tattributes [36].
MRSAR (Multiresolution simultaneous autoregressive mipde  The paper is organized as follows: in section 2 we review the
estimated coecients. Barcelos et al. [20] de ne a texture de- perceptual considerations justifying the attribute spabere
scriptor based on the modal matrix that represent the fremyue the descriptor is based on. In section 3 we propose a descrip-
space of an image consisting of eigenvectors that measeire tior Texture Component Descript¢f CD) derived from a 6D
proximity among points set of the quantized power spectriim ospace that is an early fusion of a 3D blob space and a 3D color
image. The modal matrix is their texture descriptor. Zhongi a space. The next sections will explore the comprehensive na-
Jain [21]'s color and texture descriptor is a vector thattaors  ture of the proposed descriptor: in section 3.1 we propose a
some coe cients of the DCT (Discrete Cosine Transform) in dense image representation for image segmentation, aed-in s
JPEG image format. Lazebnik et al. [22] de ned tREFT de-  tion 4 we de ne a grammar that translate our descriptor ticbas
scriptor as an sparse representation of $eT [23] that tries  linguistic terms that can improve it in browsing applicatso
to cope with image textons assuring rotation invariancéof\l  Afterwards, section 5 compiles all the experiments thatieva
these descriptors do not directly map the set of propetftieg t ates our approach. The rst experiment demonstrates that ou
extract to words describing the image. descriptor achieves similar performance to current besttrife
If we focus on the problem of descriptors that can be mappetbrs in retrieval; we compare our TCD to MPEG-7 in standard
to real words, few descriptors have been developed. Most aforel datasets. Subsequent experiments explore the loebévi
them are generally related to color properties. Carson.et athe descriptor from a qualitative point of view showing isf
[24] extracts two dominant colors from each region; Mojgito  sibility in segmentation and browsing applications. In khst
et al. [25] and Ma and Manjunath [5] from dgrent codebooks, section we summarize the proposal and outline further work.
build feature vectors with the dominant colors and its corre
sponding occurrence percentage within the image. Smith and
Chang [26], using a sparse binary vector representatioolof ¢ 2. Texture and blobs
sets, allow users to specify the color content within imadmes
picking colors from a color chooser or by textual speci oati Texture representation has been the focus of a large amount
Finally, Benavente et al. [27] proposed a fuzzy set model thaof research in Psychophysics [37, 36, 35, 29] too. Twaedi
directly maps colors to the eleven English basic color namesnt schools of thought in the study of texture segregatia®e ha
In the case of texture descriptors mapping words, Manjunatbonverged in their nal conclusions. Both rst-order sktics
et al. [28] developed the PBC, which consist of three percepef local features and global spatial considerations arelete
tual features: regularity, directionality and scale rspreed by  for a full representation. The present work is based on tke te
bounded values. These features are related to the three mash theory of Julesz and Bergen [35] as the basis for the rst
important perceptual dimensions in natural texture disitra-  steps in texture perception. After dirent conjectures, in 1983
tion 'repetitiveness, directionality and granularity&idti ed by ~ Julesz proposed this theory that states three heuristigst, F
Rao and Lohse [29] in a psychophysical experiment. Recentlyexture discrimination is a preattentive visual task. $ecoex-
Salvatella and Vanrell [30] proposed a sparse texture g#scr tons are the attributes of elongated blobs, terminatorssoss-
that is based on describing texture through their blobbaiteis, ings. Third, preattentive vision directs attentive vistonthe
this is the starting point of the proposal of this paper. location where dierences in density of textons occur, ignoring
Focusing on the previous idea of mapping descriptors ontpositional relationships between textons. Finally, heegian
words we founded more recent works on image annotatioexplicit example of textons in this way'elongated blobs of
[31, 32, 33, 34], these works follow a top-down methodologydi erent widths or lengths are dérent textons” In summary,
essentially based on machine learning techniques. The maifexton theory concludes that preattentive texture dido@dm
focus relies on the accuracy on predicting good annotatigns tion is achieved by dierences in rst-order statistics of textons,
learning from previously annotated images, usually based owhich are de ned as line-segments, blobs, crossings oriterm
standard descriptors commonly used. nators and their attributes: width, length, orientatiod aalor.
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Figure 1: Textures components and their description

This perceptual theory is the consequence of an exhaustiapace representation proposed by Lindeberg [41]. Assuming
study on local texture properties provoking preattentivauire  thatimage blobs have a Gaussian shape, we use the normalized
discrimination in experimental conditions. In this work pi@-  di erential Laplacian of Gaussian operator to detect the blobs
pose to use these powerful results derived from a large psyof the imagd,
chophysical experimentation trying to prove drent conjec-
tures. These results allow us to substitute the usual trgistep r2.mb = 2raL (1)
on annotated image datasets of most computational apmsach

. beingL (I)=1 G(; ). This operator also allows us to obtain
Our hypothesis is based on the fact that these perceptual feﬁ]e sgcalé ;nd the I(ocaiion of th% blobs. The aspect-ratioand
tures can be encoding the eiency of human visual represen- X

tation. With the same goal, an early computational implemenemat'on of non-isotropic blobs are obtained from the eigen

tation of texton theory was done by Voorhees and Poggio [38]§rls] and eigenvalues of the windowed second moment matrix

blob attributes on grey level images were used to determin To obtain the blob components of the color image, we apply

poundarles between textures. In th|§ work we propose -to CONe previously de ned dierential operators to the color chan-
tinue the work of Voorhees and Poggio [38] by updating it with nels. Since blob information emerge from both intensity and

recef“ computational operators [39] gsing color attriplﬁ@] chromaticity variations, we use the opponent color reprase
an_d Inserting one f_urther step that simulate a grouping .mecqion that separates these two color dimensions. The rstgmm
anism onto the attributes that captures emergent repetéss nent of the opponent color space is intenity, (R+ G + B)=3

[36]. ) / .
Apart from the assumption that a texture can be described band the other two are red-green, and blue-yellow chrontptici

their blob attributes, we also assume that a texture is geovi éﬁmensmns, which are given by

by the existence of groups of similar blobs. This is the basis

of the repetitiveness nature of texture images. Althougk-a d ! 12 12 0 ! r 12 !

scription based on blobs can be incomplete, the advantage of tr)g = 1 '1/3 23 g o3 (2)

our proposal is that it gives a further step in reducing sdiman y i b

gap. We are able to assign a basic semantic meaning to these

blob low-level features by translating blob attributesitguis- Wherer, g and b are normalized chromatic components,
tic terms. Some examples of this proposal can be seen in Figvhich are invariant to intensity changes and are given by
1. In image (a) a striped texture is described by twoedent ' = R{R+ G+ B),g= GHR+ G+ B) andb = B{R+ G+ B).
types of blobs: blue elongated blobs and grey elongatedsblobR, G andB are respectively the Red, Green and Blue compo-
In the same gure, texture (b) can be described in terms of @1ents of the RGB space of the original image.

di erent types of blobs: blue, green and orange, oktént Detecting blobs on this opponent space implies some redun-
sizes and shapes. The groups of blobs sharing similar f=atyrdancy since a blob could be detected in any of the three chan-
(size, orientation and color) is calléexture componentsnd  Nels. This redundancy has been eliminated by a perceptual
the texture description is obtained by joining the desmip  Itering process, selecting the blobs of higher Iter respe

of these components. In the next sections we give a metric fdf formL ) from those that overlap. Thus, this detection step

this descriptor and a translation procedure to get the IMQ;U prOVideS us with a list of blobs and their attributes that efer
terms. as Blob Components (BC), which are given in matrix form as:

2.1. Blob components B = [BiocBshaBcoll (3)

To obtain the image's blob we use the same approach givewhereB is formed by joining three matrice®,c which is the
in [30], which is based on the derential operators in the scale- location of the blobsBgh, contains their shape attributes and

3
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Figure 3: HSI color space.
Figure 2: Shape-orientation blob space in cylindrical dowates. g P

Bcol contains their color attributes. These matrices can be devyherer N _Iog(zir); N qu(A) and :_2 ' belngar_the k.)IOb
ned as: aspect ratiodr = wH), Aits area &rea= w 1) and its orien-
' Bioc = [XY] @) tation.
loc = We should stress that in this space valid blobs are locasédien

whereXT = [x1:::%]; YT = [y1:::yn], being (j, y;) the loca-  the cone delimited by the anglemax = =4 shown in gure 2,

tion of the center of-th blob andn the number of blobs, since this space de nes the blob width as the shorter of tloe tw
lengths that characterize the blob.
Bsha= [WL ] ) The best color space to represent the color attributes bgblo

T T T ) would be the uniform and calibrated CIE-Lab space, but since
whereW™ = [wy:i:wp], LT = [li:ila], " =[1::: n]being  the images we use are not calibrated we have chosen the HSI

(wj;1j; ;) shape attributes of thgth blob (width, length and  ¢ojor space for two reasons: rst, it is similar to uniformieo
the orientation, respectively), and spaces and has some correlation with the human perception of

I color and second, it is de ned on cylindrical coordinatehees

Beol = [ RGBY] (6)  blob space de ned above. This latter feature is intereshimg

T e e ==T =T — the next process of grouping. We have used the color tramsfor
wherel = [i1:::iy], RG =[rg;:::Tg,), BY =[by;:::by,] : . i

s — . : : G I d Woods [42], where:
being j;Tg;; by;) color attributes of thg-th blob (median of given in Gonzalez and Woods [42], where
the intensity and chromaticity of the pixels that form thethl HS|: R3 ! R3

respectively). (RG:B) | (hsi) (8)

This space can be seen in Fig. 3. Coloratiences are com-
puted as Euclidean distances in Cartesian coordinatesgh),

Once we have the Blob Components of the image we aim t§ Sin(), ). _
group blobs with similar features (i.e. shape-orientagign; ) Considering the properties of these two spaces we state that
and color {;7g; by)) in order to obtain the dierentTextural similar blobs are placed on dérent unidimensional varieties,
Component§¢TC) of the image. We use a uniform space sim-lines, rings or arcs. To group blobs of similar sha_pes andrsoli
ilar to uniform spaces de ned in color science to perfornsthi W€ US€ a clustering method that groups data with these points
grouping, where the distance between two points can beasonsidistributions and, at the same time, makes it possible to-com
ered proportional to their perceptual érence. Since colorand Pine spaces with deerent characteristics, speci cally color and
shape are independent features, we propose to use tecedit ~ Shape-orientation. The clustering algorithm that hasitipesp-
spaces to represent these blob attributes: one space & repfties is the Normalized Cut (N-cut) [43], which obtains the
sent shape-orientation and another to represent the dloe o~ Clusters by partitioning a graph in a recursive way, unté th
blobs. The uniform three-dimensional space used to remeseN—cutvalue exceeds a certain limit. This is the only parame-
shape-orientation is similar to blob space as de ned in [30] ter of the algorithm that determines the number of clustéers o
They proposed a three dimensional cylindrical space whege t tained. In the graph, the nodes are the points of t_he feature
axes represent the shape of the blob (aspect-ratio andearea) SPace and the edges between the nodes have a weight equal to
the third axis represents its orientation. The space we hsee the similarity between nodes. A distance measure needs to be

3. Textural Component descriptor

can be seen in Fig. 2. de ned to determine the similarity between the nodes. Sthee
The perceptual shape-orientation space is obtained by pe'f_hape-orientation space has bee_n designed to be uniform and
forming a non linear transformatids, the HSI color space is almost uniform, it is reasonable to use
the Euclidean distance. Plataniotis and Venetsanopodijs [
U: R3 1 R3 performs an experiment where they conclude that this distan
(w;l; ) ! r;z ) () used on the HSI color space is more discriminating, in color



di erence, than Canberra and Minkowski's distance measure®.1. Dense representation

The N-Cut clustering algorithm can be de ned as Once the image has been decomposed in its textural compo-
nents (set of blobs with similar characteristics, see Fjgwé
NCUT([U(Bsha); HS I(Bco)]; ) = fBY;B?,:::;BXg  (9)  build the dense image representation. To this end, we expand
the properties of each textural componésij ¢o all the pixels
where, is the weight matrix, and its elements de ne the simi- in the in uence area of its blobs. This in uence area is the im
larity between two nodes through the calculation of theatise ~ age region containing the group of blobs that form the textur
in each one of the spaces (shape-orientation and color)iman component.

dependent way. These weights are de ned as, To obtain the in uence area of a textural component, we es-
timate the periodic distance between its blobs since we know
B KU(Bsha)p U (Bsha)qkd the spatial location of blob centres. The maximum frequency

Ppa = exp 2 of the blob distance matrix provide this period estimation f

sha

kHS |(Bco|)p HS I(Bcol)qk%

2
col

each textural component,

exp (10)

p = arg n’(lja>(Hist(DTi));8i =1,2;:::k (14)

This weight represents the similarity between blptand  whered 2 DT, that is the distance matrix between all blob
blob g that depends on the similarity of its shape-orientationcentres of the-th texture componené{oc, andHist is the his-
features and the similarity of its color featuredJ(Bsng)p ~ togram.
andHS I(Bco))p are thep-th row of the matriced) (Bsha) and To assign an image pixel to a textural component from its de-
HS I(Bcor) respectively. Shi and Malik [43] de ned as the tected blobs we build a binary imagg where pixels belonging
percentage of the total range of the feature distance fumciin ~ to the detected blobs are set to one. Afterwards, we perform a
our case, shais de ned in the shape-orientation space angd ~ morphological closing operation [45] to expand the blobgsro
in the color space. We have empirically xed these values agrties to all the points in its in uence area which is giventhg
the 12 and 16 % of the range of the shape-orientation and col@stimated period, this is
distance respectively. .

The result of the clustering obtained by the N-cut algorithm lo = ((lg EEp) EEp)8i=12:k (15)
is represented bB', 8i = 1;::::k (wherek is the total number
of clusters). It is thé-th class of the clustering process that will
be thei-th texture component, this comprises,

whereEE, is a circular structuring element with radips=2,
that creates compact regions containing blobs with similar
shapes, orientations and colors, and their neighboringlgix
_ S The radius of the structuring element has coped with théadpat
B' =[B! .BL B, (11)  structure derived from the period of its blobs. The expamsio
N S o N o the blob properties is inspired in the intracortical inkidm step
whereB| . = [X'Y'], B, = [RZ' ']andB, = [H'S'l'], being  of Malik and Perona [46].
X' X asubset oK de ned by those elements belonging to  In this way, we obtain &-dimensional image representation
clusteri and the rest of the termé, R, Z', ', H', S'andl' are  (beingk the number of textural components of the image) that is
de ned in an equivalent way. our blob-based dense image representation (BR). Everi/gfixe
this image representation is given by a feature vectdraafm-
These clusters of blobs with similar attributd¥, are the ponents (being every component a binary value), which repre
basis for our descriptor, namdeéxture Component Descriptor sents the membership to a speci ¢ texture component, giyen b
(TCD), that for a given image it is denoted as its TCD descriptor. In the bottom part of the Fig.4 we show an
example of a pixel representation.

TCD=fTCD:::;TCD;:::;TCD'g (12)
. 4. A basic color-texture vocabulary
where eachT CD is given by the blob attributes of the proto-
type for each texture component or cluster. This prototgpe i In this work we take a rst step towards the construction of a
computed by estimating the median of all the blob attribiries vocabulary of basic terms in natural language, for colottbex

that cluster, BL, B! _]. This give a 6-dimensional description We propose to use plain English words to describe geometry
for each cluster or TC: and photometry of the image blobs. Since a texture is de=trib

by a list of texture components each de ned by their blob at-
tributes, we can build one linguistic phrase to describsetag-
tributes. Thus a complete description of a color texturevisry
by a list of phrases explaining the texture parts. Although t
description does not bridge all the semantic gap, it givdsnan

In this way the descriptors of an image are the shapeportant step in providing semantic properties that is nethén
orientation (3D) and color attributes (3D) of its TC. frame of texture research.

TCD = (r';Z; ':h';s;i) (13)



Color Image

Blob Components

Tezxtural Components

Dense representation

pizel;=(1,1,0,0.0,0,0)

W TODT= [(0.41,0.93,-3.02),( 357.6,0.13,0.400] pinkish-red non-oriented smail hioks
TCD%= [(0.61,1.34,-3.0%,¢ 338,0.21,0.35)]  reddish-pink non-orismted small blobs
TCD?= [(0.53,1.12,-3.020,0 199,0.10,0.51)] reddish-dark orange non-arisriad small binbs
TCD*= [(0.15,0.81,-1.96),(326.7,0.14,0 36)] pirkash-dark purple row-oriented small blobs
TCD®= [(0.39,0.92,-0.42),(353.1,0012,0 4] reddish-dark pink non-ariented small biabs
TCD?= [(0.14,0.81,-0.38),( 37 8,0.17,0.3%)] anvnge-yellow non-orisnted small biobs
TCDI= [(0.11,073,0 19,(34.4,02504%)]  fight brows nos-orienied small blobs

Figure 4: The stages of the blob-based dense image représarroposed.



Following this we detail a procedure for an automatic trans-axis. Dark modi ers are assigned to intensities over the @9%
lation of the TCD descriptor (given in equation 12 for texgur the color intensity, and Light modi ers are for intensitiesder
components) to phrases. To do this, we rstintroduce thécbas the 10%.
terms we use as vocabularies for each blob attribute, For shape description we have used highly simpli ed vocab-

ularies. Shape is constrained to two simple forms of blobs, o

Color 11 terms de ned by Berlin and Kay [47] and modeled entation is sampled to four terms, and size is reduced tethre
by Benavente et al. [27]. Moreover, we will use the samewjith regard to size, our descriptor is not scale-invaridfotg
11 basic terms with theésh modi er. areas are computed in pixels). Therefore, the assignmeizef

terms will be dependent on image size and this is an important

oint to be considered to form queries. Size speci ed in ague

as to be adjusted to the relative size of the pattern wittén t

image.

Shape 2 terms to describe shape of blobs, which are non- Thus this previous grammar with the introduced criteria pro
oriented, to refer to isotropic or near isotropic blobs, andvide impossible color combinations (suchakitish-whiteor
oriented to refer to elongated blobs. dark blacR. After removing these useless color descriptions

we have a semantic dictionary of approximately 2085 phrases

Size 3 terms to describe size of blobs: small, medium andg explain texture components. Several examples of these de
large. scriptions are shown in gures 1, 4, 10 and 11.

Intensity 2 terms (Dark or Light) to modify the basic terms of
color. They are computed on the intensity component amﬁ:
are speci c for each basic color.

Orientation 4 di erentmaodi ers to describe the orientation of
the elongated blobs; we have simpli ed them by using theg Experiments
following terms: horizontal ( 0 ), right ( 45), vertical

(' 90)andleft( 135). To evaluate our descriptor we have done threeetint ex-

Second, we give a syntax to systematically translate fram te per.|m§nts. I_n Expenmgnt Lwe te.St 'FS eiency in coping sim-
ilarity in an image retrieval application, in Experiment\2e

ture component to phrases. It is given by the following gram-

mar, in BNF @ackus Naur Forr) and using previous vocabu- prove the feasibility of its dense representation to be used
' locate textures in images, and in Experiment 3, we do a gualit

laries: tive exploration of the proposed vocabulary that can bevddri
Texturedescription = Texturecomponent [',' Texturedescription] from the descriptor.
Texturecomponent= Color_description Shapeescription 'blobs' To perform the experiments we have built our speci ¢ dataset
Color_description = [°Dark °j %Light 9 of images coming from dierent databases. The selection of
BasictermjBasictermish—BasidermjBasicterm—Basicterm images was based on the criteria of having homogeneous tex-
Basicterm = %ed’j %rang€ j %orowrf j Yellow’ j %greerf j %olue’ tures to preserve the same appearance in any subimage of the
i %purple?j %pink®j %lack j °grey’ j Awhite? given image. With this property we assure that errors in re-
Basictermish = %eddisH j %orangisl? j orownisH j %ellowis trieval would only be due to the descriptor and not to inhosrog
j %greenisfij %luisk j °pur plist j Opinkist j %olackisi? neous properties of the texture images (such us inhomogsneo
j °greyisij WwhitisH lighting or background).
Shapedescription = Orientationdescription Sizedescription Next, we detail the sources and how the dataset has been
Orientationdescription = [ °Non-Oriented j built:
Basicorientation “Oriented]
Basicorientation = ®horizontal j %ight®j Yvertical j %e f° Mayang's Texture database 59 images have been se-
Sizedescription = °smalP j ‘mediunij darge® lected, they can be seen in Fig. 5(a). We extracted 354

subimages by taking 6 sub-images of every image.

To select the terms from the values of the TCD we have used
di erent criteria. For color description we assign names based Outex database [49]. 6 images randomly selected from
on the fuzzy system de ned by Benavente et al. [48]. In this  each one of the 16 original textures (in Fig. 5(b), ex-
frame the 11 basic terms are parameterized by sigmoid func-  tracted from Outex-TC-00013) obtaining 96 images for
tions that assign membership values to each color term. A  our dataset.
unique color term is assigned if its membership is high, that . o
is, we consider it a pure color. For non pure colors we use just ~ VisTex database We selected 5 images (shown in Fig.
the rst two greatest memberships, e.g. colors are in boriesla 5(c)), commonly used in these experiments and we ob-
of just two color terms and therefore a bi-lexemic term isduse tained 30 images for our dataset.
(hyphen form). If one of the two memberships is still predom-
inant we use theish modi er for the non-predominant color, n _ _
otherwise we use the two basic terms. Moreover, color descri , Dataset by ~W. Smith and ~ AM.  Murni, 2001
. . . . . . . p7/www.mayang.cortextures
tion can be modi ed by an intensity term darkor light, in this 2MIT  Media Lab, Vision Texture-VisTex database, 1995
case the term refers to the position of the color in the iritgns https/vismod.media.mit.eduismodimageryVisionTexturdvistex.htm|
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(b) ()

Figure 5: Images in our dataset. (a) From Mayang databajs€rdn the Outex database. (c) From VisTex database.

Thus, the dataset has 480 images (the resolution of the sarte perform additional psychophysical experiments. Somd-st
ples is 100 x 100 pixels) of 80 textures. We stress that wiseredes have tackled the problem of combining texture and color
all images in the Outex database were acquired in an strictl{51] concluding that weights applied to color and textureewh
controlled environment (known illumination sources anadgn  estimating similarities are highly dependent on the obsyeaad
ing geometry), the rest of the images were acquired under nothe context.

controlled conditions. Retrieval experiments have been performed on our dataset in
troduced above ( gure 5) and three sets of Texture images fro
5.1. Experiment 1 the Corel stock photography collection Textures (137000),

, . Textures Il (404000) and Various Textures | (593000). In the
In this experiment we evaluate the performancd@D de- oy hariment we refer to them &@orel, Corel2 and Corell re-

spriptor in image r.etrieval. In order to do so we compute th%pectively. Each Corel group has 100 textures (768 x 512 pix-
distance between images and we need to use an adequate sigi) every texture is divided into 6 subimages and the total

larity measure bearing the following consideration: imsagan number of textures isXa.00 = 600 for each Corel dataset. In

have di erent number of Textural Components (TC) (see equare 6 we show some textures of the three Corel datasets.

tion 12) where the number of components (or clusters) depend” \ve have used the almost standard Recall measure [52] to
on the complexity of image con_tent, this is automatically de evaluate the performance of the retrieval and the precision

termined by the clustering algorithm. We have used the Earthy 5| curves. These measures have been computed by using
Movers Distance (EMD) [50] that fullls this consideralid 5y the images of each dataset as query images and afterwards
This metric requires to de ne a ground distance between tWQye have computed the average of all queries. In the ideal case

clusters. In our case this corresponds to the distance BBIWE ot the retrieval, the top 6 retrieved images would be from the
two components of aCD. Below we de ne this ground dis- ¢5me original subsampled image.

tance by combining with a weighting parameters the two f@atu ygjng similar weights in the combination of shape and color
spaces (shape-orientation and color) in the following neann descriptors to compute the distance ( in equation 5.1) we

have found that they do not have a big in uence in the average

d(TCcD:TCD)= d TCD:TCD recall measure. This is probably due to the fact that coldr an
( ) shapd . ) . texture information is integrated earlier, at the blob Iebefore
+  Oeoo(TCD; TCD)) building the descriptof CD. This fact is illustrated in Fig.7 for

our dataset (a) and fa@orel dataset in (b). Best results in all

where d_ShaPe and deoior are Euclidean distancgs in the Sh"”‘pe'datasets are obtained when both color and shape are combined
orientation space and color space, respectively, that are dotherwise average rate decreases substantially.

rived from the uniform property of both spaces. Each dis- To compare e ciency, in table 1 we show retrieval rates for

tance has been normalized; this is possible because our fegi, 4 qatasets using ofiED and two MPEG-7 descriptors [53].
ture spaces are bounded independently of the image conteRts have combined two MPEG-7 descriptors, HTHIb(noge-

Shape-orientation space has the limits of blob attributet a neous Texture Descriptband SCD Scalable Color Descrip-
color space is bounded by the maximum luminance. The pa-

rameters and are weighting these two distances. To obtain a
good estimation of these two parameters it would be negessar 3Corel data are distributed through httpww.emsps.corphotocdcorelcds. htm
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Figure 6: Corel datasets.
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Figure 7: Retrieval performance of TCD with dirent weights. (a) Our dataset. @prel dataset.
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Figure 8: Precision-Recall curves of TCD and MPEG7 desariptHTD and SCD) for dierent datasets.

| Descriptor | our datasef] Corel [ Corell | Corel2 |
TCD 97.33| 73.25| 86.25| 79.11
MPEG-7(SCD & HTD) 97.85| 67.33| 85.94| 76.11

Table 1: Average Retrieval Rate

tor) as they are combined in Dorairaj and Namuduri [15]. The

Average Retrieval rate computed shows how @D over-

come MPEG-7 descriptors for the three Corel datasets and a

similar performance is achieved for our dataset. We alsasho

precision-recall curves using the same datasets in Fidi8rav

we show the full evaluation that con rms the previous result

over the precision range. Figure 9: Retrieval performance using a BR-based segn@mtat

5.2. Experiment 2

In this experiment we evaluate the dense representation ONS using the proposed dense representation. Then in each
a retrieval application that is based on a weak segmentatioh€9i0n We compute its descriptor (TCD) inside the biggest in
This allows us to evaluate its eciency with images containing SCribed rectangle of the region. For a given image query we
di erent textural patterns. compute !ts distance to each one of the image regions, of all

Assuming that a texture is formed by several textural comdatasets images.
ponents spatially grouped on the same region, we perform the The image queries used in the retrieval are the same as those
image segmentation by clustering the feature vectors afe  used in the rst experiment. The ectiveness of the retrieval is
resentation build in section 3.1. We have used a SOM (Sel&gain evaluated computing the Retrieval rate. In the idaséc
Organizing Map) neural network [54] to perform the cluster-all the top N retrievals belong to the same original largegma
ing, although we could have used any other simple clusteringlowever, since the texture images that compose the mosaics
technique. This process generdtersegions associated to each has been randomly chosen, there is not a unique value of N.
one of the textural patterns of the image, whiris de ned by  Concretely we have between 137 and 194 images of the same
the user. Considering an image as a mosaic oédint texture texture through the several mosaics. This implies that ¢n Fi
regions [18], we have built a dataset formed by 1500 mosai® is not possible to mark the point where we expect to achieve
images, were each mosaic is composed by selecting 9 randaime maximum possible eciency (the top N retrievals), so we
images from our dataset with the restriction that no mosaveh marked with red lines these 137 and 194 values. In this gure
a repeated texture. we can see that the retrieval eiency is between 57% and 62%.

Before performing the image retrieval, all the mosaics ef th In this way, we can quantify the reduction of eiency that is
image dataset are segmented and decomposed into several dee to the segmentation process.
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Although the reduction is important, an eiency 60% is  oriented large blobs; showing with a frame Q the position of
still an acceptable rate for a representation that locatdanes the query descriptor. In this case two essential axis emerge
in images. This is an important issue if we want to evaluatdor the orientation and another for the color saturationi &s
the applicability of the proposed descriptor. A descriptith provided by the query. The gure at the bottom is the result of
semantic properties but without the ability of locatingttees  the more complex querBlue horizontal oriented small blobs
in images could not be completely justi ed. AND Brown horizontal oriented small blopshich is based on

In Figures 10 and 11 we show two examples of image querietwo di erent texture components. The con guration obtained
and their corresponding retrieval results. For every image ona 2D plot of MDS clearly shows an axis where the two colors
give its ranking in the retrieval. In both cases we show ttet r of the query appear on the extremes. In the center and next
5 retrieval results and the subregion (white rectangle)refite  to the query position we can see the images where both colors
was detected, in the 2nd row we show the rst ve failed result appear together. In this 2D plot there is not a clear inteéapicn
A gualitative analysis of the results make us to highlight tw for shape.
points, rstthe boundaries of segmentation need to be invguio At this point we have to conclude that this is a preliminary
mainly when the size of blobs increases. Second, in moseof thand qualitative analysis to illustrate the behavior of thetno
examples the errors arise from images that are quite sitailar for the proposed descriptor, which seems to be coherent with
the query, following the properties of the metric descrilred the texture appearance explained with basic linguistimser
previous experiment.

To conclude this section we have added a similar retrieval
experiment but with natural images instead of squared rossai 6. Conclusions
We have built a small dataset of 21 images (see Fig.12). We
show the results from three dérent queries extracted from the ~ This paper proposes a computational approach implementing
same images. Top ve retrieved images and the regions wher@ perceptual theory that combines color and texture in g earl
they were found are shown in gure 13. Although some fur-fusion way using a low-dimensional space that copes with blo
ther research needs to be done to improve segmentation, V@étributes. It provides a comprehensive framework sineg-it
again conclude the applicability of the proposed descripoel ~ lows to de ne sparse, dense and linguistic descriptionstdrc

its dense versions for general natural images. texture images.
The work implements the original de nition of the Julesz's
5.3. Experiment 3 perceptual theory Julesz and Bergen [35], where textonssare

From a qualitative point of view we analyzed how the ap-sentially de ned by the attributes of image blobs. The htites
pearance of textures is represented by the proposed descripwe propose are: area, aspect-ratio and orientation (feregha
using Multidimensional Scaling (MDS) [55] in order to regduc and color, that de nes a low dimensional color-texture spac
the dimension of the representation. In gure 14 we show a We propose a color-texture descriptor: the Texture Com-
global plot of the MDS computed on the distance matrix ob-ponent Descriptor (TCD), that arise from the decomposition
tained in Experiment 1, the stress measure obtained for owf the image in itstextural componentsvhich are groups of
dataset is 165 (the ideal value is 0 which indicates a per-blobs with similar attributes either color, shape or orétion.
fect low dimension representation). In this gure we can seeThis is based on a clustering on the perceptual spaces of the
the combination of the two cylindrical spaces, color ancgogha blob attributes. Clusters of blobs are coping with the ieneér
orientation. In the center we see an important overlappfng orepetitive property of the image texture. We compare our pro
images, whereas in the external area we can see several exgp@sed descriptor with a combination of two MPEG-7 descrip-
ples of dominant properties. It seems that in the area arouni@rs (HTD and SCD) in a retrieval experiment. Our descriptor
the circumference we have set there are images with dominaavercomes MPEG-7 in three Corel datasets of natural texture
saturated colors and dominant directions of anisotropbodl Moreover, we present two additional experiments that ex-
Furthermore, along circular axis of dominant propertiesae  plore the comprehensive qualities of the proposed framlewor
see how the hues (blue, pink-purple, brown-red) are groupedfirst, we show that the descriptor can be extended to a dense
In gure 15 we show a zoom of the central part of this plot representation inspired on a winner-take-all mechanism-co
where we can see three dirent types of images: textures with puted with morphological operations. This color-textuee-r
a dominant color but with low saturation (greyish pattertes)-  resentation shows a reasonable performance in locatitigréex
tures with isotropic blobs, and textures with propertieshaf  patterns included in complex images. Second, we give a pro-
extreme axis but appearing together on the same imagesthatgedure to translate the descriptor to a preliminary vocaiyul
two or more saturated colors of dirent hues (e.g. brown and based on basic English terms. The experiment gives a qualita
blue), or extreme orientations on the same pattern (e.g.80 tive evaluation of the proposed vocabulary using Multidime

As an example of browsing, instead of using sub-images asional Scaling to explore the perceptual properties of te d
query, in gure 16 we show two examples of queries formulatedscriptor on the whole image dataset. Additionally, we ptohe
in terms of our vocabulary. In both gures we show the 2D plot examples of the retrieved images from term-based queras th
of MDS computed on the distance matrix of the descriptors oshow the feasibility of the descriptor in browsing applioas.
top 40 images retrieved from a textual query. At the top of Further work is needed to evaluate the performance of our
this gure we show the result from the quer{Blue vertical  proposal in larger datasets. Introducing structural pribggeof
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#1

#27

#1

#14

Green non-oriented medium blobs
Dark blue non-oriented medium blobs
Yellowish-orange non-oriented medium blobs

Dark blue non-oriented small blobs
Dark blue right oriented small blobs
Green non-oriented small blobs

#2 #3 #4 #5

#41 #45 #52 #60

Figure 10: Query image and its textual description (on tipé. thst row: top 5 retrieved images. 2nd row: top 5 errors irieeal.

Grey non-oriented small blobs
Grey horizontal oriented small blobs
Grey vertical oriented small blobs

#2 #3 #4 #5

#46 #54 #56 #57

Figure 11: Query image and its textual description (on tipé. thst row: top 5 retrieved images. 2nd row: top 5 errors firieeal.

Figure 12: Natural images Dataset.
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Figure 13: Top 5 retrieved images of the query on the leftroolu

Figure 14: 2D MDS con guration of the our image dataset.
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Figure 15: Central zoom of the 2D MDS results.

the texture patterns that emerge from the blob organizétian [9]
regularity), using the localization of the blobs that isealdy
computed with texture components, could clearly improwe th
descriptor for browsing. [10]
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